step

hyppo.tools.step(n, p, noise=False, low=- 1, high=1)

Step simulation.

Step (X,Y)Rp×R:

XU(1,1)pY=1wTX>0+ϵ

where 1 is the indicator function.

Parameters
  • n (int) -- The number of samples desired by the simulation (>= 5).

  • p (int) -- The number of dimensions desired by the simulation (>= 1).

  • noise (bool, default: False) -- Whether or not to include noise in the simulation.

  • low (float, default: -1) -- The lower limit of the uniform distribution simulated from.

  • high (float, default: 1) -- The upper limit of the uniform distribution simulated from.

Returns

x,y (ndarray of float) -- Simulated data matrices. x` and ``y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.